21类激光技术前沿应用系列大揭秘!(上)
以下文章来源于神奇激光世界-长春新产业 ,作者新产业激光,江苏激光联盟转载
神奇激光世界-长春新产业
长春新产业光电技术有限公司(CNI)是依托中国科学院长春光机所设立的高科技企业,主要从事半导体激光器、固体激光器、 激光测量设备、光谱仪器、教学仪器和机器视觉产品的研发、生产和销售,并提供光学仪器、精密机械和光学镀膜产品的设计和加工。
近年来,以激光器为基础的激光产业在全球发展迅猛。据统计,每年和激光相关产品和服务的市场价值高达上万亿美元。得益于应用领域的不断拓展,中国激光产业也逐渐驶入高速发展期。小编将为大家介绍21类激光前沿应用,并对激光器的选择提供一些参考性建议。
1、数字PCR(dPCR)
数字PCR是第三代PCR技术,是一种核酸分子绝对定量技术。与传统qPCR技术相比,数字PCR(dPCR)具有:绝对定量、无需标准品、样品需求低,高灵敏度,高耐受性等特点。
数字PCR一般包括两部分内容,即PCR扩增和荧光信号分析。在PCR 扩增阶段,数字PCR一般需要将样品稀释到单分子水平,并平均分配到几十至几万个单元中进行反应,通过特定激光来激发出通道中的荧光信号。在扩增结束后对各个反应单元的荧光信号进行统计学分析,最后通过直接计数或泊松分布公式计算得到样品的原始浓度或含量。相对于qPCR技术,dPCR技术具备以下优势:(1)灵敏度可达单个核酸分子:检测限低至0.001%;(2)无需标准品/标准曲线,即可对靶分子起始量进行绝对定量;(3)特别适合基质复杂样品的检测;(4)能够有效区分浓度差异(变化)微小的样品,有更好的准确度、精密度和重复性。目前,数字PCR技术在病原体检测、癌症生物标志物研究和拷贝数变异分析、基因表达分析、环境监测、食品检测等领域得到广泛应用。
常见的数字PCR(dPCR)技术主要有两种:微滴式dPCR(ddPCR)和芯片式dPCR(cdPCR)。两者基本原理相同,由于芯片式dPCR制造芯片的成本较高,目前微滴式dPCR以更低成本、更实用的优势,正越来越受到企业的认可。微滴式dPCR(ddPCR)也在此次疫情防控中有力推动了对疑似疫情感染患者的甄别工作。
主要组成:荧光通道、激光器、光学检测器、数据采集系统等。
激光器选择:高功率稳定性,光斑高斯分布。
常用波长:405nm,473nm,532nm,639nm等。
2、流式细胞术
流式细胞术是一项集激光技术、电子物理、流体力学、光电测量技术、计算机技术、单克隆抗体技术为一体的新型高科技技术,被誉为实验室的CT,是一种可以对细胞(或亚细胞)结构进行快速测量的新型分析技术和分选技术。
通过快速测定库尔特电阻、荧光、光散射和光吸收来定量测定细胞 DNA含量、细胞体积、蛋白质含量、酶活性、细胞膜受体和表面抗原等许多重要参数。根据这些参数将不同性质的细胞分开,以获得供生物学和医学研究用的纯细胞群体。随着流式细胞技术水平的不断提高,其应用范围也日益广泛。流式细胞术已普遍应用于免疫学、血液学、肿瘤学、细胞生物学、细胞遗传学、生物化学等临床医学和基础医学研究领域。
主要组成:液流系统,光路系统,信号测量和细胞分选等。
激光器要求:高稳定性,低噪声,定制光斑。
常用波长:355nm,360nm,405nm,473nm,488nm,532nm,561nm,593.5nm,640nm,671nm,785nm等。
3、荧光显微成像&共聚焦显微成像
荧光显微技术是利用激光作为激发光源激发荧光基团产生荧光而成像,产生的荧光波长一般与激发光不同。它与一般光学显微镜一样是场激发,因而只能面成像。
共聚焦显微技术是在荧光显微分析技术的基础上发展起来的,利用荧光显微镜可以对生物样品发出的荧光进行观察和分析。但是荧光显微镜收集到的是样品的整体荧光,来自样品内不同部位的荧光信号相互干扰、难以区分,无法获得准确的定位和定量信息。
共聚焦显微技术的出现很好地解决了这一问题,这一技术可以获取细胞内某个薄层面上的荧光信息,而该层以外的信号被消除掉,成像清晰程度大大提高。结合计算机自动控制,可以对荧光信号的分布、强度和动态变化进行全方位的分析,得到丰富的信息。与传统显微镜相比,共聚焦显微镜可抑制图像的模糊,获得清晰的图像;具有更高的轴向分辨率,并可获取连续光学切片,增加侧向分辨率;点对点扫描,去除了杂散光的影响。其应用领域扩展到细胞学、微生物学、发育生物学、遗传学、神经生物学、生理和病理学等学科的研究工作中,成为现代生物学微观研究的重要工具。
激光器要求:低噪声,高功率稳定性,窄线宽,自由空间/光纤耦合输出,单波长/多波长可选。
常用波长:266nm,355nm,405nm,473nm,520nm,532nm,561nm,640nm,808nm,980nm等。
4、光声成像
光声成像技术是指:当用短脉冲激光辐照生物组织时,位于组织体内的吸收体(如肿瘤)吸收脉冲光能量,从而升温膨胀,产生超声波;这时,位于组织体表面的超声探测器可以接收到这些外传的超声波,并依据探测到的光声信号来重建组织内光能吸收分布的图像。近年来,光声断层成像、光声显微成像、光声内窥成像发展迅速,使得532nm高重频固体脉冲激光器,以及可调谐激光器得到广泛应用。
对比其他医学成像技术,光声成像技术的优点及先进性:
(1)使用非电离辐射,是一种无损的医学成像技术。
(2)结合了光学成像的高对比度和超声成像的高分辨率。解决了光学成像/超声成像对比度不高,无法有效监测早期肿瘤的问题。
(3)适用于通过内源性对比进行功能,代谢和组织学成像,以及通过外部对比进行分子和细胞成像。并可与其他成像模式互补并兼容,尤其是光学成像和超声成像。
激光器要求:光点稳定性好,光斑优。
常用波长:266nm,457nm,532nm,660nm,770-840nm可调谐激光器等。
5、光学相干层析成像(OCT)
光学相干层析成像(OCT)是20世纪90年代逐步发展而成的一种新的三维层析成像技术。
OCT基于低相干干涉原理获得深度方向的层析能力,通过扫描可以重构出生物组织或材料内部结构的二维或三维图像。其信号对比度源于生物组织或材料内部光学反射(散射)特性的空间变化。该成像模式的核心部件包括低相干宽带激光光源、光纤迈克尔逊干涉仪和光电探测器,其轴向分辨率取决于宽带光源的相干长度,一般可以达到1-15μm,而径向分辨率与普通光学显微镜类似,决定于样品内部聚焦光斑的尺寸,一般也在微米量级。
OCT具有非接触、非侵入、成像速度快(实时动态成像)、探测灵敏度高等优点。目前,OCT技术已经在临床诊疗与科学研究中获得了广泛的应用,如眼科医疗,视网膜病、牙科龋齿的检测、心血管疾病探查、胃肠道疾病检测、乳腺癌早期诊断等,具有其他检测设备无法比拟的高分辨率和精准度。
主要组成:低相干宽带激光光源,光纤迈克尔逊干涉仪,光电探测器等。
激光器要求:较宽的频谱宽度,高输出功率,高功率稳定性,易于耦合。
常用波长:1470nm,1550nm,1710nm等。
6、DNA测序
DNA测序是指通过分析特定DNA片段碱基序列,也就是腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)与鸟嘌呤的(G)排列方式,获得生物遗传信息的方法。
DNA测序采用链终止法,在DNA转录末端引入带有荧光标记的寡核苷酸,此时DNA被分成了长度不同的单链;再使其通过激光聚焦光束,不同荧光素会发出不同颜色荧光,达到标记核苷酸排序的目的。DNA测序的出现极大地推动了生物学和医学的研究和发现。
激光器要求:高波长稳定性,高功率,优光斑均匀性。
常用波长:473nm,488nm,505nm,514.5nm,532nm,561nm,577nm,639.5nm等。
7、光镊
光镊(Optical tweezers)技术基于光辐射压力与单光束梯度力光阱,是用物镜下高度汇聚的激光形成的三维梯度势阱来俘获、操纵和测量微小颗粒力学特性的光学技术。光镊的应用可归纳为四类,即光镊与细胞生物学、光镊与单分子生物学、光镊与胶体科学以及光镊与物理学4个学科领域。光镊技术在这些领域已成功解决了许多的重大科学问题。经过近30年的发展,光镊技术得到了极快的发展。由过去简单的单光镊演化出了许多其他的类型,极大地扩大了光镊技术在现代科学技术领域的应用。
1)全息光镊:可以自由控制多个粒子,使得粒子的融合、吸附以及粒子间或粒子与表面的相互作用研究得到简化。利用全息元件或空间光调制器(SLM)所形成的全息光镊,在多粒子操控方面的优势,为光镊技术走向实用化、规模工业生产打开了新局面,是目前光镊家族极具活力的成员。
2)等离子体光镊:用最小激光能量镊取最小微粒的纳米光镊。通过采用等离子体光镊结构,被捕获的纳米颗粒的运动被限制在等离子体区域,该区域比激光的衍射限制区域小得多,使得捕获更加稳定。等离子体光镊技术可以克服自由空间衍射带来的限制,增强阱内的局部光强度,能解决目前光镊技术研究中存在的进场光镊倏逝场偏弱、金属颗粒难以捕获等问题。等离子光镊技术不仅将加速生命/纳米/材料科学的研究进展,而且还将产生新的功能材料、纳米医学和诊断工具。这一科学领域在未来将继续迅速发展。
激光器要求:低噪声,高功率稳定性。
常用波长:532nm、635nm、1064nm等。
今天的激光应用解析讲到这里先暂时告一段落,未完待续,敬请期待下期分享!